libfishsound Reference Manual
0.5.20

Generated by Doxygen 1.3.4

Tue Oct 21 08:27:01 2003

Contents

1 libfishsound Main Page 1
1.1 FishSound, the sound of fish!, 1
1.2 Licensing 1
1.3 History and Motivation 2

2 libfishsound Module Index 3
2.1 libfishsound Modules e 3

3 libfishsound Data Structure Index 5
3.1 libfishsound Data Structures

4 libfishsound File Index 7
4.1 libfishsound File List e e e

5 libfishsound Module Documentation 9
5.1 Configuration 9
5.2 Imstallation 11
5.3 Building against libfishsound o o oL 14

6 libfishsound Data Structure Documentation 15
6.1 FishSoundFormat Struct Reference 15
6.2 FishSoundInfo Struct Reference, 16

7 libfishsound File Documentation 17
7.1 constants.h File Reference 17

7.2 fishsound.h File Reference 19

Chapter 1

libfishsound Main Page

Author:
Conrad Parker

1.1 FishSound, the sound of fish!

This is the documentation for the FishSound C API. FishSound provides a simple programming
interface for decoding and encoding audio data using Xiph.Org codecs (Vorbis and Speex).

1.1.1 API specification

The entire FishSound API is documented in the fishsound.h (p. 19) header file.

e fishsound.h (p.19)

1.1.2 Library customization

You can build a smaller version of libfishsound to only decode or encode, or and you can choose
to disable support for a particular codec.

¢ Configuration (p.9)

1.1.3 Building against libfishsound

e Building (p. 14)

1.2 Licensing

libfishsound is provided under the following BSD-style open source license:

Copyright (c) 2002, Xiph.org Foundation

Redistribution and use in source and binary forms, with or without

libfishsound Main Page

modification, are permitted provided that the following conditions
are met:

- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

- Neither the name of the Xiph.org Foundation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
¢¢AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE REGENTS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.3 History and Motivation

libfishsound was designed and developed by Conrad Parker on the weekend of October 18-19 2003.

Much of the API design follows the style of 1ibsndfile.

Generated on Tue Oct 21 08:27:01 2003 for libfishsound by Doxygen

Chapter 2

libfishsound Module Index

2.1 libfishsound Modules

Here is a list of all modules:

Configuration L
Installation e
Building against libfishsound oL

libfishsound Module Index

Generated on Tue Oct 21 08:27:01 2003 for libfishsound by Doxygen

Chapter 3

libfishsound Data Structure Index

3.1 libfishsound Data Structures

Here are the data structures with brief descriptions:

FishSoundFormat (Info about a particular sound format)
FishSoundInfo (Info about a particular encoder/decoder instance)

libfishsound Data Structure Index

Generated on Tue Oct 21 08:27:01 2003 for libfishsound by Doxygen

Chapter 4

libfishsound File Index

4.1 libfishsound File List

Here is a list of all documented files with brief descriptions:

constants.h (Constants used by libfishsound)o 0L,
fishsound.h (The libfishsound C APT)

libfishsound File Index

Generated on Tue Oct 21 08:27:01 2003 for libfishsound by Doxygen

Chapter 5

libfishsound Module Documentation

5.1 Configuration

5.1.1 ./configure
It is possible to customize the functionality of libfishsound by using various ./configure flags when
building it from source; for example you can build a smaller version of libfishsound to only decode

or encode, or and you can choose to disable support for a particular codec. By default, both
decoding and encoding support is built for all codecs found on the system.

For general information about using ./configure, see the file INSTALL (p.11)

5.1.1.1 Removing encoding support

Configuring with —disable-encode will remove all support for encoding;:

e All internal encoding related functions will not be built
e The resulting library will not be linked against libvorbisenc

e Any attempt to call fishsound new() with FISH SOUND_ ENCODE will fail, returning
NULL

e Any attempt to call fishsound encode() will return -1

5.1.1.2 Removing decoding support

Configuring with —disable-decode will remove all support for decoding;:

e All internal decoding related functions will not be built

e Any attempt to call fishsound new() with FISH SOUND_ ENCODE will fail, returning
NULL

¢ Any attempt to call fishsound decode() will return -1

10 libfishsound Module Documentation

5.1.1.3 Removing Vorbis support
Configuring with —disable-vorbis will remove all support for Vorbis:

e All internal Vorbis related functions will not be built

e The resulting library will not be linked against libvorbis or libvorbisenc

5.1.1.4 Removing Speex support
Configuring with —disable-speex will remove all support for Speex:

e All internal Speex related functions will not be built

e The resulting library will not be linked against libspeex

5.1.1.5 Configuration summary

Upon successful configuration, you should see something like this:

libfishsound 0.6.0: Automatic configuration OK.

General configuration:

Experimental code: no
Decoding support: yes
Encoding support: yes

Library configuration (./src/libfishsound):

Vorbis support: yes
Speex support: yes

Example programs (./src/examples):

Ogg: liboggz example: yes
PCM: libsndfilel example: yes

Installation paths:

libfishsound: /usr/local/lib
C header files: /usr/local/include/fishsound
Documentation: /usr/local/share/doc/libfishsound

Example programs will be built but not installed.

Generated on Tue Oct 21 08:27:01 2003 for libfishsound by Doxygen

5.2 Installation

11

5.2 Installation

5.2.1 INSTALL

Basic Installation

These are generic installation instructions.

The ‘configure’ shell script attempts to guess correct values for
various system-dependent variables used during compilation. It uses
those values to create a ‘Makefile’ in each directory of the package.
It may also create one or more ‘.h’> files containing system-dependent
definitions. Finally, it creates a shell script ‘config.status’ that
you can run in the future to recreate the current configuration, a file
‘config.cache’ that saves the results of its tests to speed up
reconfiguring, and a file ‘config.log’ containing compiler output
(useful mainly for debugging ‘configure’).

If you need to do unusual things to compile the package, please try
to figure out how ‘configure’ could check whether to do them, and mail
diffs or instructions to the address given in the ‘README’ so they can
be considered for the next release. If at some point ‘config.cache’
contains results you don’t want to keep, you may remove or edit it.

The file ‘configure.in’ is used to create ‘configure’ by a program
called ‘autoconf’. You only need ‘configure.in’ if you want to change
it or regenerate ‘configure’ using a newer version of ‘autoconf’.

The simplest way to compile this package is:

1. ‘cd’ to the directory containing the package’s source code and type
¢./configure’ to configure the package for your system. If you’re
using ‘csh’ on an old version of System V, you might need to type
‘sh ./configure’ instead to prevent ‘csh’ from trying to execute
‘configure’ itself.

Running ‘configure’ takes awhile. While running, it prints some
messages telling which features it is checking for.

2. Type ‘make’ to compile the package.

3. Optionally, type ‘make check’ to run any self-tests that come with
the package.

4. Type ‘make install’ to install the programs and any data files and
documentation.

5. You can remove the program binaries and object files from the
source code directory by typing ‘make clean’. To also remove the
files that ‘configure’ created (so you can compile the package for
a different kind of computer), type ‘make distclean’. There is
also a ‘make maintainer-clean’ target, but that is intended mainly
for the package’s developers. If you use it, you may have to get
all sorts of other programs in order to regenerate files that came
with the distribution.

Compilers and Options

Some systems require unusual options for compilation or linking that
the ‘configure’ script does not know about. You can give ‘configure’
initial values for variables by setting them in the environment. Using
a Bourne-compatible shell, you can do that on the command line like
this:

CC=c89 CFLAGS=-02 LIBS=-lposix ./configure

Generated on Tue Oct 21 08:27:01 2003 for libfishsound by Doxygen

12 libfishsound Module Documentation

Or on systems that have the ‘env’ program, you can do it like this:
env CPPFLAGS=-I/usr/local/include LDFLAGS=-s ./configure

Compiling For Multiple Architectures

You can compile the package for more than one kind of computer at the
same time, by placing the object files for each architecture in their
own directory. To do this, you must use a version of ‘make’ that
supports the ‘VPATH’ variable, such as GNU ‘make’. ‘cd’ to the
directory where you want the object files and executables to go and run
the ‘configure’ script. ‘configure’ automatically checks for the
source code in the directory that ‘configure’ is in and in ‘..7.

If you have to use a ‘make’ that does not supports the ‘VPATH’
variable, you have to compile the package for one architecture at a time
in the source code directory. After you have installed the package for
one architecture, use ‘make distclean’ before reconfiguring for another
architecture.

Installation Names

By default, ‘make install’ will install the package’s files in
¢/usr/local/bin’, ¢/usr/local/man’, etc. You can specify an
installation prefix other than ¢/usr/local’ by giving ‘configure’ the
option ¢--prefix=PATH’.

You can specify separate installation prefixes for
architecture-specific files and architecture-independent files. If you
give ‘configure’ the option °--exec-prefix=PATH’, the package will use
PATH as the prefix for installing programs and libraries.

Documentation and other data files will still use the regular prefix.

In addition, if you use an unusual directory layout you can give
options like ‘--bindir=PATH’ to specify different values for particular
kinds of files. Run ‘configure --help’ for a list of the directories
you can set and what kinds of files go in them.

If the package supports it, you can cause programs to be installed
with an extra prefix or suffix on their names by giving ‘configure’ the
option f--program-prefix=PREFIX’ or ¢--program-suffix=SUFFIX’.

Optional Features

Some packages pay attention to ‘--enable-FEATURE’ options to
‘configure’, where FEATURE indicates an optional part of the package.
They may also pay attention to ¢--with-PACKAGE’> options, where PACKAGE
is something like ‘gnu-as’ or ‘x’ (for the X Window System). The
‘README’> should mention any ‘--enable-’ and ‘--with-’ options that the
package recognizes.

For packages that use the X Window System, ‘configure’ can usually
find the X include and library files automatically, but if it doesn’t,
you can use the ‘configure’ options ¢--x-includes=DIR’ and
¢--x-libraries=DIR’ to specify their locationms.

Specifying the System Type

There may be some features ‘configure’ can not figure out
automatically, but needs to determine by the type of host the package
will run on. Usually ‘configure’ can figure that out, but if it prints
a message saying it can not guess the host type, give it the
¢--host=TYPE’ option. TYPE can either be a short name for the system

Generated on Tue Oct 21 08:27:01 2003 for libfishsound by Doxygen

5.2 Installation

13

type, such as ‘sun4’, or a canonical name with three fields:
CPU-COMPANY-SYSTEM

See the file ‘config.sub’ for the possible values of each field. If
‘config.sub’ isn’t included in this package, then this package doesn’t
need to know the host type.

If you are building compiler tools for cross-compiling, you can also
use the ‘--target=TYPE’ option to select the type of system they will
produce code for and the ¢--build=TYPE’ option to select the type of
system on which you are compiling the package.

Sharing Defaults

If you want to set default values for ‘configure’ scripts to share,
you can create a site shell script called ‘config.site’ that gives
default values for variables like ‘CC’, ‘cache_file’, and ‘prefix’.
‘configure’ looks for ‘PREFIX/share/config.site’ if it exists, then
‘PREFIX/etc/config.site’ if it exists. O0r, you can set the
‘CONFIG_SITE’ environment variable to the location of the site script.
A warning: not all ‘configure’ scripts look for a site script.

Operation Controls

‘configure’ recognizes the following options to control how it
operates.

¢--cache-file=FILE’
Use and save the results of the tests in FILE instead of
¢./config.cache’. Set FILE to ¢/dev/null’ to disable caching, for
debugging ‘configure’.

¢--help’
Print a summary of the options to ‘configure’, and exit.

f--quiet?
¢--silent?
:_q:

Do not print messages saying which checks are being made. To
suppress all normal output, redirect it to ¢/dev/null’ (any error
messages will still be shown).

¢--srcdir=DIR’
Look for the package’s source code in directory DIR. Usually
‘configure’ can determine that directory automatically.

‘--version’
Print the version of Autoconf used to generate the ‘configure’

script, and exit.

‘configure’ also accepts some other, not widely useful, optioms.

Generated on Tue Oct 21 08:27:01 2003 for libfishsound by Doxygen

14 libfishsound Module Documentation

5.3 Building against libfishsound

5.3.1 Using GNU autoconf

If you are using GNU autoconf, you do not need to call pkg-config directly. Use the following
macro to determine if libfishsound is available:

PKG_CHECK_MODULES (FISHSOUND, fishsound $>$= 0.6.0,
HAVE_FISHSOUND="yes", HAVE_FISHSQUND="no")
if test "x$HAVE_FISHSOUND" = "xyes" ; then
AC_SUBST (FISHSOUND_CFLAGS)
AC_SUBST (FISHSOUND_LIBS)
fi

If libfishsound is found, HAVE FISHSOUND will be set to "yes", and the autoconf variables
FISHSOUND _CFLAGS and FISHSOUND _LIBS will be set appropriately.

5.3.2 Determining compiler options with pkg-config

If you are not using GNU autoconf in your project, you can use the pkg-config tool directly to
determine the correct compiler options.

FISHSOUND_CFLAGS=‘pkg-config --cflags fishsound‘

FISHSOUND_LIBS=‘pkg-config --libs fishsound®

Generated on Tue Oct 21 08:27:01 2003 for libfishsound by Doxygen

Chapter 6

libfishsound Data Structure
Documentation

6.1 FishSoundFormat Struct Reference

#include <fishsound.h>

6.1.1 Detailed Description

Info about a particular sound format.

Data Fields

e int format
FISH SOUND_VORBIS, FISH SOUND_SPEEX etc.

e const char * name

Printable name.

e const char * extension

Commonly used file extension.

The documentation for this struct was generated from the following file:

e fishsound.h

16 libfishsound Data Structure Documentation

6.2 FishSoundInfo Struct Reference

#include <fishsound.h>

6.2.1 Detailed Description

Info about a particular encoder/decoder instance.

Data Fields

e int samplerate

Sample rate of audio data in Hz.

e int channels

Count of channels.

e int format
FISH SOUND_VORBIS, FISH SOUND_SPEEX etc.

The documentation for this struct was generated from the following file:

e fishsound.h

Generated on Tue Oct 21 08:27:01 2003 for libfishsound by Doxygen

Chapter 7

libfishsound File Documentation

7.1 constants.h File Reference

7.1.1 Detailed Description

Constants used by libfishsound.

Enumerations

¢ enum FishSoundMode { FISH SOUND _ DECODE = 0x10, FISH SOUND -
ENCODE = 0x20 }

e enum FishSoundFormat { FISH SOUND UNKNOWN = 0x00, FISH -
SOUND_VORBIS = 0x01, FISH _SOUND _SPEEX = 0x02 }

e enum FishSoundCommand {

FISH SOUND_COMMAND_NOP = 0x0000, FISH_SOUND_GET_INFO =
0x1000, FISH_SOUND_GET_DECODE_INTERLEAVE = 0x2000, FISH -
SOUND _SET_DECODE_INTERLEAVE = 0x2001,

FISH_SOUND_SET ENCODE_VBR = 0x4000, FISH_SOUND_-
COMMAND _MAX }

7.1.2 Enumeration Type Documentation

7.1.2.1 enum FishSoundCommand

Enumeration values:
FISH SOUND_ COMMAND _ NOP No operation.

FISH SOUND _GET INFO Retrieve the FishSoundInfo(p. 16).

FISH SOUND_GET DECODE INTERLEAVE Query if decoding should be in-
terleaved.

FISH SOUND_ SET DECODE INTERLEAVE Set to 1 to interleave, 0 to non-
interleave.

18 libfishsound File Documentation

7.1.2.2 enum FishSoundFormat
Enumeration values:
FISH SOUND_UNKNOWN Unknown.
FISH SOUND_VORBIS Vorbis.
FISH SOUND_SPEEX Speex.

7.1.2.3 enum FishSoundMode

Enumeration values:
FISH SOUND_ DECODE Decode.

FISH SOUND_ENCODE Encode.

Generated on Tue Oct 21 08:27:01 2003 for libfishsound by Doxygen

7.2 fishsound.h File Reference 19

7.2 fishsound.h File Reference

7.2.1 Detailed Description

The libfishsound C API.

7.2.2 General usage

All access is managed via a FishSoundx handle. This is instantiated using fish sound -
new()(p.23) and should be deleted with fish sound _delete()(p.22) when no longer required.
If there is a discontinuity in the input data (eg. after seeking in an input file), call fish sound -
reset()(p. 23) to reset the internal codec state.

7.2.3 Decoding

To decode audio data using libfishsound, first create a FishSound* object with mode FISH -
SOUND_DECODE. fish _sound new()(p.23) will return a new FishSoundx object, initialised
for decoding, and the FishSoundInfo(p. 16) structure will be cleared.

7.2.4 Encoding

To encode audio data using libfishsound, first create a FishSound+ object with mode FISH -
SOUND_ ENCODE, and with a FishSoundInfo(p. 16) structure filled in with the required en-
coding parameters. fish sound new()(p.23) will return a new FishSoundx object initialised
for encoding.

#include <fishsound/constants.h>

Data Structures

o struct FishSoundFormat

Info about a particular sound format.

e struct FishSoundInfo

Info about a particular encoder/decoder instance.

Typedefs

e typedef void * FishSound
An opagque handle to a FishSound.

o typedef int(x FishSoundDecoded)(FishSound x*fsound, float **pcm, long frames, void
«xuser _data)

Signature of a callback for libfishsound to call when it has decoded audio PCM data.

o typedef int(x FishSoundEncoded)(FishSound *fsound, unsigned char xbuf, long bytes,
void xuser _data)

Signature of a callback for libfishsound to call when it has encoded data.

Generated on Tue Oct 21 08:27:01 2003 for libfishsound by Doxygen

20 libfishsound File Documentation

Functions

e int fish sound identify (unsigned char xbuf, long bytes)
Identify a codec based on the first few bytes of the data.

¢ FishSound * fish _sound new (int mode, FishSoundInfo *fsinfo)

Instantiate a new FishSoundx handle.

e int fish sound set decoded callback (FishSound xfsound, FishSoundDecoded
decoded, void xuser _data)

Set the callback for libfishsound to call when it has a block of decoded audio ready.

e int fish sound set encoded callback (FishSound xfsound, FishSoundEncoded
encoded, void xuser data)

Set the callback for libfishsound to call when it has a block of encoded data ready.

e long fish _sound decode (FishSound xfsound, unsigned char xbuf, long bytes)
Decode a block of data.

e long fish _sound encode i (FishSound xfsound, float *+pcm, long frames)

Encode a block of interleaved audio.

e long fish sound encode n (FishSound xfsound, float *pcm[], long frames)

Encode a block of non-interleaved audio.

o int fish sound reset (FishSound xfsound)
Reset the codec state of a FishSound object.

e int fish sound delete (FishSound *fsound)
Delete a FishSound object.

e int fish sound command (FishSound xfsound, int command, void xdata, int data-
size)

Command interface.

7.2.5 Typedef Documentation

7.2.5.1 typedef int(x FishSoundDecoded)(FishSound * fsound, float *+* pcm, long
frames, void * user data)

Signature of a callback for libfishsound to call when it has decoded audio PCM data.

Parameters:
fsound The FishSoundx handle

pem The decoded audio
frames The count of frames decoded

user_ data Arbitrary user data

Generated on Tue Oct 21 08:27:01 2003 for libfishsound by Doxygen

7.2 fishsound.h File Reference 21

Returns:

0 to continue, non-zero to stop decoding immediately and return control to the fish sound -
decode()(p.21) caller

7.2.5.2 typedef int(x FishSoundEncoded)(FishSound * fsound, unsigned char * buf,
long bytes, void * user data)

Signature of a callback for libfishsound to call when it has encoded data.

Parameters:
fsound The FishSoundx* handle

buf The encoded data
bytes The count of bytes encoded

user _data Arbitrary user data

Returns:
0 to continue, non-zero to stop encoding immediately and return control to the fish sound -
encode() caller

7.2.6 Function Documentation

7.2.6.1 int fish sound command (FishSound * fsound, int command, void * data,
int datasize)

Command interface.

Parameters:
fsound A FishSoundx handle

command The command action
data Command data

datasize Size of the data in bytes

Returns:
0 on success, -1 on failure

7.2.6.2 long fish sound decode (FishSound x fsound, unsigned char * buf, long
bytes)

Decode a block of data.

Parameters:
fsound A FishSoundx* handle (created with mode FISH_SOUND _DECODE)

buf A buffer of data
bytes A count of bytes to decode (ie. the length of buf)

Returns:
The number of bytes consumed

Generated on Tue Oct 21 08:27:01 2003 for libfishsound by Doxygen

22 libfishsound File Documentation

7.2.6.3 int fish sound delete (FishSound * fsound)
Delete a FishSound object.

Parameters:

fsound A FishSoundx handle

Returns:
0 on success, -1 on failure

7.2.6.4 long fish sound encode i (FishSound * fsound, float x+ pcm, long frames)

Encode a block of interleaved audio.

Parameters:

fsound A FishSoundx handle (created with mode FISH SOUND ENCODE)
pem A block of audio data

frames A count of frames to encode

Returns:
The number of frames encoded

7.2.6.5 long fish sound encode n (FishSound x* fsound, float * pcm[], long
frames)

Encode a block of non-interleaved audio.

Parameters:
fsound A FishSoundx* handle (created with mode FISH SOUND ENCODE)

pem An array of pointers to audio data, one block per channel

frames A count of frames to encode

Returns:
The number of frames encoded

7.2.6.6 int fish sound identify (unsigned char x buf, long bytes)
Identify a codec based on the first few bytes of the data.

Parameters:
buf A pointer to the first few bytes of the data

bytes The count of bytes available at buf

Returns:
FISH SOUND _ VORBIS, FISH SOUND SPEEX etc. or FISH SOUND UNKNOWN

Note:
You should pass at least 8 bytes of data to this function :)

Generated on Tue Oct 21 08:27:01 2003 for libfishsound by Doxygen

7.2 fishsound.h File Reference 23

7.2.6.7 FishSoundx fish sound new (int mode, FishSoundInfo * fsinfo)
Instantiate a new FishSoundx* handle.

Parameters:
mode FISH _SOUND_ DECODE or FISH SOUND ENCODE

fsinfo

Returns:
A new FishSoundx handle, or NULL on error

7.2.6.8 int fish sound reset (FishSound * fsound)
Reset the codec state of a FishSound object.

Parameters:

fsound A FishSoundx handle

Returns:
0 on success, -1 on failure

7.2.6.9 int fish sound set decoded callback (FishSound x fsound,
FishSoundDecoded decoded, void x user data)

Set the callback for libfishsound to call when it has a block of decoded audio ready.

Parameters:
fsound A FishSoundx* handle (created with mode FISH SOUND DECODE)

decoded The callback to call

user _data Arbitrary user data to pass to the callback

Returns:
0 on success, -1 on failure

7.2.6.10 int fish sound set encoded callback (FishSound x fsound,
FishSoundEncoded encoded, void * user data)

Set the callback for libfishsound to call when it has a block of encoded data ready.

Parameters:
fsound A FishSoundx handle (created with mode FISH SOUND ENCODE)

encoded The callback to call

user_ data Arbitrary user data to pass to the callback

Returns:
0 on success, -1 on failure

Generated on Tue Oct 21 08:27:01 2003 for libfishsound by Doxygen

Index

Building against libfishsound, 14 fish sound reset
fishsound.h, 23
Configuration, 9 FISH_SOUND_SET_DECODE_-
constants.h, 17 INTERLEAVE
FISH SOUND_ COMMAND _ NOP, constants.h, 17
17 fish sound set decoded callback
FISH_SOUND_DECODE, 18 fishsound.h, 23
FISH_SOUND_ENCODE, 18 fish sound set encoded callback
FISH SOUND GET DECODE - fishsound.h, 23
INTERLEAVE, 17 FISH SOUND_ SPEEX
FISH_SOUND_GET_INFO, 17 constants.h, 18
FISH SOUND_ SET DECODE - FISH_SOUND_UNKNOWN
INTERLEAVE, 17 constants.h, 18
FISH_SOUND_SPEEX, 18 FISH_SOUND_ VORBIS
FISH SOUND UNKNOWN, 18 constants.h, 18
FISH SOUND_VORBIS, 18 fishsound.h, 19
FishSoundCommand, 17 fish sound command, 21
FishSoundFormat, 17 fish sound decode, 21
FishSoundMode, 18 fish sound delete, 21
fish _sound encode i, 22
fish_sound _command fish_sound_encode_n, 22
fishsound.h, 21 fish_sound _identify, 22
FISH SOUND_ COMMAND _ NOP fish sound new, 22
constants.h, 17 fish sound reset, 23
FISH _SOUND_ DECODE fish sound set decoded callback, 23
constants.h, 18 fish sound set encoded callback, 23
fish sound decode FishSoundDecoded, 20
fishsound.h, 21 FishSoundEncoded, 21
fish sound delete FishSoundCommand
fishsound.h, 21 constants.h, 17
FISH SOUND ENCODE FishSoundDecoded
constants.h, 18 fishsound.h, 20
fish sound encode i FishSoundEncoded
fishsound.h, 22 fishsound.h, 21
fish sound encode n FishSoundFormat, 15
fishsound.h, 22 constants.h, 17
FISH SOUND_ GET_ DECODE - FishSoundInfo, 16
INTERLEAVE FishSoundMode
constants.h, 17 constants.h, 18
FISH SOUND_ GET_INFO
constants.h, 17 Installation, 11

fish sound identify
fishsound.h, 22

fish sound new
fishsound.h, 22

